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Spatial conformations of a self-avoiding tethered membrane with a quenched in-plane disorder have been
studied using Monte Carlo methods. The simulations have been performed for systems with various strengths
of disorderv and self-avoidanceb. ~1! The membrane with ‘‘strong’’ self-avoidance and weak disorder
(b,v)5(1.7,0.3) is in the usual flat phase and its shrinkage is small. Even if the temperature decreases the
membrane does not show any clear evidence of a large buckling.~2! As the strength of disorder increases the
membrane with ‘‘weak’’ self-avoidance (b53.0) shows a phase transition from a usual floppy flat phase
(v50.0) to a crumpled phase (v50.75,n50.85–0.92!, passing through a new flat phase with a small rough-
ness exponent (v50.52,n'50.160.1). We discuss the implication of the result, in particular its relevance to
the understanding of the wrinkling transition in partially polymerized vesicles.@S1063-651X~96!10807-2#

PACS number~s!: 87.22.Bt, 36.20.Ey, 64.60.2i, 82.65.Dp

I. INTRODUCTION

The statistical properties of polymerized membranes, or
tethered surfaces, have been widely discussed in the past few
years @1–3#. The polymerized membrane is a two-
dimensional generalization of a linear polymer. At low-
temperature a membrane with bending rigidity is asymptoti-
cally flat, and its radius of gyrationRG increases as the linear
internal dimensionL of the surface@3,4#. As a function of
temperature, the membrane without self-avoiding interaction
~phantom membrane! shows a crumpling transition from the
low-temperature flat phase to a high-temperature crumpled
phase (RG;AlnL) @3#. The properties of the flat phase have
been studied extensively@4–7#. It is characterized by an
anomalous elasticity with shear and compression moduli
(m and l) that vanish and by a bending rigidity (k) that
diverges with decreasing wave number.

One of the surprising characters of the membrane is that
the self-avoiding tethered membrane is flat when embedded
in three-dimensional space@8–10#. Abraham and Nelson
@11# discussed the origin of the phenomena: Entropic bend-
ing rigidity induced by the~next-nearest-neighbor! self-
avoidance causes the crumpling transition@1# and the mem-
brane becomes flat. This means that the flat phase of the
self-avoiding tethered membrane is described by the
Aronowitz-Lubensky~AL ! fixed point associated with the
flat phase of the phantom membrane@6#. Their discussion
also means that the hard-sphere model has an inevitably
large bending rigidity originated from the next-nearest-
neighbor interactions and that these simulation did not purely
investigate the effect of self-avoidance. That is, the hard-
sphere model is inevitably rigid when the self-intersection is
completely prohibited. In order to study the ‘‘genuine’’ self-
avoidance effect, tethered membrane with hard spheres of
smaller diameter~‘‘weak’’ self-avoidance! @9,10,12#, and
‘‘plaquette’’ membrane model@13,14# have been employed
@15#. Even in these cases, the membrane becomes flat and it
was concluded that the self-avoiding tethered membrane is

flat. Theoretically, using the Gaussian variational method,
Guitter and Palmeri@16#, Le Doussal@17#, and Goulian@18#
discussed the existence region of the crumpled phase and
showed that the self-avoiding tethered membrane is flat in
three-dimensional space. Higher-dimensional cases were also
well described in the same framework@19#. However, as
these theories do not describe the buildup of bending forces
by the self-avoiding interaction and do not answer why the
Gaussian approximation works instead of the Flory approxi-
mation, we have a wide gap between the theories and nu-
merical simulations@12#.

Recently, studies on the effects of quenched in-plane dis-
orders have been performed. One of the most important ef-
fects of the disorder is the buckling transition@20#. Although
the stable phase of a defect-free polymerized membrane is
flat, the strains induced by a defect, such as a dislocation, can
be accommodated by displacements in the normal direction,
resulting in the buckling of the membrane. This process,
which depends on a balance between in-plane stretching en-
ergy and curvature energy, occurs when

K0l
2/k.g. ~1.1!

Here,K0 is the Young’s modulus,k the bending rigidity,l a
length scale, andg a dimensionless constant of order 102

@20,21#. The length scalel depends on the nature of the
defect. For example, in membranes of sizeR, l5R for dis-
clinations andl5ARb for a dislocation with the Burger’s
vector bW . Thus these defects always buckle in sufficiently
large membranes, irrespective of the value of the elastic con-
stants. On the other hand, for finite energy defects such as
vacancies, interstitials, or tightly bound dislocation pairs,l is
an order of a lattice constant and the stability of the flat
phase depends on the actual values of the elastic constants.
This leads to the following interesting possibility of a buck-
ling transition in an infinite system as a function of the tem-
perature@21#. As the temperatureT decreases,k decreases
and K0 increases. At some temperatureTB , the condition
~1.1! is satisfied and the membrane shows a buckling transi-
tion. We can assume that this process is also possible even if
the membrane has the self-avoiding interaction. However,*Electronic address: mori@monet.phys.s.u-tokyo.ac.jp
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the self-avoiding interaction does contribute to the bending
rigidity as a ‘‘remnant’’ term@22#. If the interaction is too
strong, the buckling condition is not satisfied and the mem-
brane remains flat even if we quench the system to very low
temperature.

Experimentally, Mutz, Bensimon, and Brienne discovered
the ‘‘wrinkling transition’’ in partially polymerized lipid
vesicles @23,24#. The membrane undergoes a reversible
phase transition from a high-temperature phase, where the
membrane is smooth and very fluctuating, to a low-
temperature phase characterized by a rigid and highly
wrinkled surface. Nelson and Radzihovsky@25,26# and
Morse, Lubensky, and Grest@27,28# analyzed the stability of
the flat phase of the~phantom! tethered membrane with ran-
domnesses of the locally preferred metric and spontaneous
curvature by the field theoretical method. It was concluded
that atT.0 the weak short-range disorder is irrelevant and
that the rigid membrane is still described by the pure flat
phase AL fixed point. In order to explain the wrinkling tran-
sition, two possibilities are proposed. One is the strong dis-
order @29,30# and the other is the long-range correlation of
the disorder@26,31#, which is induced by unscreened discli-
nations@32#. On the other hand, the fact that the flat phase of
the rigid phantom polymerized membrane is stable with re-
spect to the weak disorders atT.0 implies that the flat
phase of the self-avoiding tethered membrane is also stable
with respect to the disorders. The situation, however, is not
so simple. Mori and Wadati@33,34# discussed the existence
region of the crumpled phase of the self-avoiding tethered
membrane with disorders and proposed a possibility that the
membrane is crumpled withn56/7 atd53.

This analysis does not contradict the above analyses of
the flat phase, because it does not forbid the existence of any
flat phase. That is, when the membrane is very rigid, the
membrane may become flat and a crumpled phase occurs
only when the effective bending rigidity of the membrane is
small. In fact, Morse,et al. @35# carried out molecular-
dynamics simulation for self-avoiding polymerized fluid
membrane. The model contains disclinations and disloca-

tions all over the membrane. They have used the hard-sphere
model with a diameter that completely prohibits the self-
intersections of the membrane. They concluded that the
membrane is asymptotically flat and those sites with more

FIG. 1. Time dependence of autocorrelationARg for the radius
of gyration with N5547. The curve (3) depicts ARg for
(b,v)5(3.0,0.75) ~weak self-avoidance and strong disorder! and
the curve (L) representsARg for (b,v)5(3.0,0.0)~regular hexago-
nal membrane!.

FIG. 2. ~a! Typical configuration of a tethered membrane with
weak self-avoidance and strong disorder (b,v)5(3.0,0.75) and 547
monomers in three-dimensional space~after 20N2 Monte Carlo
steps!. ~b! Typical configuration of a tethered membrane with
strong self-avoidance and weak disorder (b,v)5(1.7,0.3) and 547
monomers in three-dimensional space~after 6N2 Monte Carlo
steps!. ~c! Typical configuration of a tethered membrane with no
disorder (b,v)5(3.0,0.0) and 547 monomers.
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than six neighbors buckle only locally. In order to conclude
whether the ‘‘genuine’’ self-avoiding tethered membrane
with disorders can be crumpled or not, it is necessary to
investigate very soft~small bending rigidity! membranes.
Another motivation for studying the weak self-avoiding case
is that we can expect a large conformational transformation.
From the condition~1.1! the buckling transition occurs more
easily when the effective bending rigidity is small. Following
this point of view, we have performed Monte Carlo studies
of a similar model proposed by Morseet al. @36#. As a teth-
ering potential between nearest-neighbor monomers, we use
the following potential

UNN~r !5k~r 22b2!2, ~1.2!

wherek is the force constant and the constantb denotes the
equilibrium bond length. We studied the model for several
choices ofb @37,38# and a fixed value of the diameter of the
hard sphere ats51.0. By changing the bond lengthb, we
can simulate the membrane with several values of effective
bending rigidity and various flexibility. The result is summa-
rized as follows. When the reference bond length is small
(b51.7), the membrane is asymptotically flat and it does not
show large conformational transformation, which is consis-
tent with the result by Morseet al. When we takeb53.0
~weak self-avoidance case!, the membrane shows a large
shrinkage~density becomes about seven times! and it is con-
sidered to be in a crumpled phase withn50.8760.02 @38#.

We note that in the above analysis we have observed a
large shrinkage and a crumpled phase only in the ‘‘weak’’
self-avoiding case. There remains the possibility that such
findings may be an artifact of the model, because the self-
intersection is not necessarily prohibited. We cannot exclude
such possibility in the hard-sphere model when we analyze
the self-avoiding membrane with small effective bending ri-
gidity. However, it is important that the membrane becomes
crumpled even in the weak self-avoiding case. Up to now,
almost all theoretical works dealt with the stability of the flat
phase of the~phantom! rigid polymerized membrane~or sta-
bility of the AL fixed point!. Even if self-intersection is not

FIG. 3. The shrinkage parameterPshrink as a function of mono-
mer number N. The curve (3) depicts Pshrink for b53.0,
v50.75; the curve (L) depictsPshrink for b53.0, v50.52; and the
curve (h) representsPshrink for b51.7, v50.3.

FIG. 4. Scaling plot of the mean square radius of gyration
^RG

2 &(3) and expectation valueŝl1&(L), ^l2&(h), ^l3&(1) of
the eigenvalues of the moment of inertia tensor for membranes with
(b,v)5~3.0,0.75! ~a!, ~b,v!5~3.0,;0.52! ~b!, and (b,v)5~1.7,0.3!
~c!. ~a! The solid lines have slopes 0.94,0.92,0.88,1.17 from top to
bottom; ~b! 0.89,0.96,1.04,0.00;~c! 0.95,0.93,0.93,1.13.
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completely forbidden, when the usual flat phase becomes
unstable in numerical studies, the AL fixed point becomes
unstable by disorder. We can say that the disorders are rel-
evant to the behavior of the membrane.

In this work, we shall report Monte Carlo studies of an-
other model for self-avoiding tethered membrane with a
quenched in-plane disorder. Introducing two kinds of mono-
mers@big (pi51) and small (pi521!#, which are chosen at
random on the network, the reference length between theith
and jth monomerbi j varies among monomer pairs by the
rule bi j5b1(pi1pj )v. With the model we can change the
strength of disorder at our convenience. This disorder has a
short-range correlation and it is the same with the disorder in
the polymerized fluid membrane@39#. Phantom case of the
model with bending rigidity was at first studied by Kantor
@40# and at low temperature the shape of the membrane de-
viated from a flat configuration and it settled into a partially
folded ground state. We shall study the effect of self-
avoidance on this model without bending rigidity apart from
that induced by the self-avoidance. Especially, when the
bending rigidity of the membrane is small or the diameter of
the hard sphere is small~‘‘weak’’ self-avoidance!, we like to
see whether the membrane is crumpled or not and whether
the flat phase becomes unstable or not. We also like to see
whether the membrane shows the buckling transition as tem-
perature decreases when the membrane is flat at high tem-
perature@20,21#. The outline is as follows. At first, we study
the model at a fixed temperature with~1! ‘‘strong’’ self-
avoidance and weak disorder (b,v)5(1.7,0.3) and ~2!
‘‘weak’’ self-avoidance and several strengths of disorder
(b53.0). We note that, in these models we do not prohibit
completely the self-intersection even in the case~1! and that
the name ‘‘strong’’ is not truly strong. Then, in the case~1!,
where the membrane becomes asymptotically flat at some
temperature, we study the quenching process and see
whether there occurs a large conformational transformation.

The paper consists of the following. In Sec. II, we de-
scribe the model and numerical procedures. The results of
the simulations are presented and analyzed in Sec. III. The
membrane with weak self-avoidance (b53.0) shows large
shrinkage even if the strength of disorder is small
(v;0.2). The membrane with weak disorder (v;0.52) is
asymptotically flat and roughness exponentn' is extraordi-
narily small (n'.0.160.1). The membrane with strong dis-
order (v50.75) seems to be crumpled and the exponent for
the radius of gyrationRG is 0.85–0.92. The membrane with
strong self-avoidance and weak disorder (b,v)5(1.7,0.3) is
asymptotically flat and its relative shrinkage as compared
with the membrane without disorder is small. Even if the
temperature decreases, the shape of the membrane does not

show large folding, which is observed in the phantom case.
On the contrary, the membrane becomes more and more flat.
In Sec. IV, we discuss the implications of the results and
suggest directions of further studies.

II. MODEL SYSTEM AND SIMULATION PROCEDURE

The model that we study consists of hard spheres with
diameters connected in a two-dimensional triangular array
embedded in a three-dimensional space. The position of the
ith atom in such a network is denoted byrW i . In the simula-
tion a hexagonal sheet~L<27 monomers across! with
N5(3L211)/4 monomers excised from the triangular lattice
has been used. The connectivity of the system is fixed by
keeping nearest-neighbor atoms on the lattice connected by a
tethering potential@41#

UNN~r i j !5k~r i j
22bi j

2!2. ~2.1!

Here r i j denotes the distance betweenith andjth monomers
and bi j denotes the equilibrium distance~bond length!,
which varies among atom pairs but is kept frozen during the
simulation. The force constantk of the springs connecting
the nearest neighbors is the same everywhere and is repre-
sented ask5e0 /s

2 in terms of an arbitrary energy unit
e0 . The bond lengths have been chosen by the following
procedure@40#: every atomi is independently assigned a
random numberpi561, representing big or small atoms,
respectively. The bond length between atomi and neighbor-
ing atomj is set asbi j5b1(pi1pj )v. Thus the bond length
between two big atoms isb12v, the bond length between
two small atoms isb22v, while the distance between a big
and a small atom isb. Such a choice maintains an average
bond lengthb. In order to take into account the effect of
self-avoidance, we add the following potential between all
pairs of monomers:

U~r !SA5H 0 r.s

` otherwise.
~2.2!

Hereafter, we fix the diameter of the hard sphere at
s51.0. Note that the tethering potential does not restrict the
length between nearest-neighbor monomers. Even if we take
b,A3 and v50, we cannot completely forbid the self-
intersection at finite temperature. In the simulation we have
studied two cases: The first case isb51.7 @~1!:‘‘strong’’
self-avoidance# and the second case isb53.0 @~2!:‘‘weak’’
self-avoidance# @42#. Case~1! corresponds to a rigid mem-
brane and case~2! corresponds to a membrane with small
bending rigidity. About the strength of disorder, in the case

TABLE I. Scaling exponents ofRG andl i . These exponents are determined from the data forL519, 23,
and 27.

(b,v) n n1 n2 n3

~1.7,0.0! 1.006 0.01 0.976 0.03 1.146 0.06 0.7460.37
~1.7,0.3! 0.956 0.01 0.936 0.02 0.936 0.05 1.1360.36
~3.0,0.0! 1.126 0.01 1.136 0.02 1.326 0.09 0.6860.48
~3.0,0.52! 0.896 0.01 0.966 0.03 1.046 0.05 0.0060.2
~3.0,0.75! 0.946 0.01 0.926 0.02 0.886 0.05 1.1760.27
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~1!, we have fixedv50.3, which is close to the maximal
contrast between the long and the short bonds as allowed by
the algorithm. In case~2!, we have at first studied exten-
sively two casesv50.333.0/1.7;0.52 ~weak disorder! and
v50.75~strong disorder!. The reason we takev;0.52 is that
such a choice corresponds to the same strength of disorder
with case~1!, because the ratios (v/b) are equal. Then we
have varied the strength of disorder in the range
0.0,v,0.95. For comparison, we have also performed
Monte Carlo study of the model with no disorder,
(b,v)5(3.0,0.0) and (b,v)5(1.7,0.0). About the force con-
stantk, we have studied the behavior of the membrane at a
temperature k/kBT51.0 and used the unit
T51.0(k/KB51.0). At this temperature, the fluctuation of
the distances between monomers is small. When we decrease
the temperature in the case~1!, the simulation begins at
T510.0, which was decreased from time to time by a factor
3. This corresponds to rapid cooling and there remains the
possibility that the membrane is trapped in some local mini-
mum @43#. However, we think that even with such rapid
cooling we can see whether there occurs buckling instability,
since it results in a large conformational transformation of
the membrane.

An elementary move in Monte Carlo simulation consists
of randomly choosing an atom and moving it by a distance
s in a randomly chosen direction. In all the simulations we
have taken the displacements<0.2. A trial move is accepted
or rejected according to the conventional procedure of com-
paring exp(2DE/kBT), whereDE is the energy difference
between the configuration before and after the trial move,
with a random number chosen from the interval 021. We
define the Monte Carlo time unit as a time required to per-
form N elementary moves.

In order to investigate the number of time steps~defined
in terms of Monte Carlo steps! required for thermalization,
we have estimated the relaxation time by calculating the au-
tocorrelation function of the observables such as radius of
gyration and eigenvalues of the inertia tensor. The autocor-
relation function of a physical quantityO is defined as

AO~ t !5~Š@O~ t81t !2^O~ t8!&#@O~ t8!

2^O~ t8!&#‹!/Š@O~ t8!2^O~ t8!&#2‹, ~2.3!

where the averagê& is performed over the timet8. Figure 1
depicts an example of such measurement for an
L527(N5547) surface at temperatureT51.0. The lines
~crosses! and ~diamonds! correspond to the autocorrelation
function ARg(t) of the radius of gyration, respectively, for
(b,v)5(3.0,0.75) and (b,v)5(3.0,0.0). From the figure we
seeN2 Monte Carlo time units is sufficient for equilibration
and independence between samples at the system size
N5547. In all the simulation, we have usedN2 Monte Carlo
steps as our time unit and we have performed an equilibrium
process over times ranging between 30N2 and 500N2 Monte
Carlo time units. We have also performed the disorder aver-
age forN<169 with some samples. When we vary the tem-
perature or the strength of disorder, we have used a triangu-
lar lattice with 271 monomers.

FIG. 5. ~a! The structure factorS1(q) plotted as a function of
the scaling variablesqL0.90 for N5271 (3), 397 (L), and 547
(h). ~b! The structure factorS2(q) plotted as a function of the
scaling variablesqL0.85 for N5271 (3), 397 (L), and 547
(h). ~c! The ‘‘perpendicular’’ structure factorS3(q) plotted as a
function of the scaling variablesqL0.95 for N5271 (3), 397
(L), and 547 (h).
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III. RESULTS

Typical spatial conformations of the 547-monomer mem-
branes are presented in Fig. 2. The membrane with weak
self-avoidance and strong disorder (b,v)5(3.0,0.75) shows
a large shrinkage. The membrane is highly crumpled as com-
pared with the membrane with no disorder
(b,v)5(3.0,0.0) @Fig. 2~c!#. On the other hand, the spatial
conformation of the membrane with ‘‘strong’’ self-
avoidance and weak disorder (b,v)5(1.7,0.3) exhibits clear
anisotropy@Fig. 2~b!#. The membrane seems to be flat and,
apart from some local buckling, the shrinkage is small.

As in previous works@8–10#, the inertia tensor of the
system

Tab5~1/N!(
i
r i

ar i
b2~1/N2!(

i , j
r i

ar j
b ~3.1!

is diagonalized for each configuration in the data set and the
eigenvalues are numbered according to their magnitudes as
l1.l2.l3 . The directions of the principal axes are given
by the eigenvectorseW j corresponding tol j . In Fig. 3, we

FIG. 6. ~a! The structure factor
S1(q) plotted as a function of the
scaling variables qL1.0 for
N5271 (3), 397 (L), and 547
(h). ~b! The ‘‘perpendicular’’
structure factorS3(q) plotted as a
function of the scaling variables
qL0.21 for N5271 (3), 397
(L), and 547 (h).
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plot the eigenvalues and the square of the radius of gyration
RG
2 (5l11l21l3) versusN. The exponentsn and n i are

defined as

RG
2;L2n, l i;L2n i. ~3.2!

When the membrane is flat, the exponentsn, n1, and n2
should coincide (RG

2;l1;l2;L2n) and n51.0. We call
the exponentn3 the roughness exponentn'(n',1.0) in this
case. When the membrane is crumpled, all the exponents
coincide andn,1.0.

Before presenting the results of these exponents, we shall
quantify the shrinkage of the membrane. In order to charac-

terize the shrinkage of the membrane, especially the differ-
ence between the membranes with and without disorder, we
introduce the following shrinkage parameter@37#:

Pshrink5
Vmembrane with disorder

Vmembrane without disorder
, ~3.3!

whereV is defined as

V5Al1l2l3. ~3.4!

This shrinkage parameter means the inverse of the relative
density of the membrane. In Fig. 3, we show the shrinkage

FIG. 7. ~a! Plot of the mean
square radius of gyration̂RG

2 &
3(3) and expectation values
^l1&(L), ^l2&(h), ^l3&(1) of
the eigenvalues of the moment of
inertia tensor for membranes with
(b,N)5(3.0,271).~b! The shrink
parameterPshrink as a function of
strength of disorderv. N5271
andb53.0.
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FIG. 8. Typical spatial conformation of the two-dimensional membrane with weak self-avoidance (b53.0) and ~a! v50.05, ~b!
v50.3, ~c! v50.50 in a flat membrane, and~d! v50.95 in a crumpled membrane.

FIG. 9. Temperature dependence of the three~ordered! eigenvaluesl1.l2.l3 of the inertia tensor of the membrane with
(b,v)5(1.7,0.3) andN5271.
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parameter as a function of the monomer numberN for each
case. When the self-avoidance is weak and the bending ri-
gidity of the membrane is small (b53.0), we can see a large
shrinkage. WithN5547 the relative density becomes about
11 times and it does not depend on the strength of disorder
(v50.52 and 0.75). On the other hand, the membrane with
strong self-avoidance and weak disorder (b,v)5(1.7,0.3)
shows a small shrinkage. We think that in this case the dis-
order does not change the shape of the membrane drastically
and only local buckling occurs, as we have seen in the spatial
configuration. This result completely coincides with that of
the simulation of polymerized fluid membrane@35,38#.

In what follows, we shall study the asymptotic behavior
of the membrane. At first, we study the scaling behavior of
the eigenvalues of the inertia tensor. In Fig. 4 and Table I,
we summarize the results. In pure cases (b,v)5(3.0,0.0)
and (1.7,0.0), the exponentsn, n1, and n2 are apparently
larger thann3 and the membrane is asymptotically flat. How-
ever, the exponentsn, n1, andn2 are larger than 1 and this
means the membrane with (3.0,0.0) tends to stretch and there
remains the effect of the boundary fluctuation or the force
constant k is not strong enough. Also in the case
(b,v)5(3.0,0.52), the exponentsn, n1, and n2 are larger
thann3 and the membrane is anisotropic~flat!. We see that
the exponentn' is very smalln'50.060.2. Such small un-
dulations are caused by the large shrinkage of the membrane.
As we increase the strength of disorderv, the usual flat
phase becomes unstable by the disorder and the membrane is
in a new flat phase. In the cases (b,v)5(3.0,0.75) and
(1.7,0.3) all the exponentsn andn i are large and we see no
clear evidence of an anisotropy. However, the membrane
with (b,v)5(1.7,0.3) shows only a small shrinkage~Fig. 3!
and its spatial conformation shows clear anisotropy@Fig.
2~b!#. We think that the membrane is flat in this case. On the
other hand, the membrane with (3.0,0.75) exhibits a large
shrinkage and its spatial conformation is also highly
crumpled. The membrane with~3.0,0.52! is in a new flat
phase and the membrane with~3.0,0.75! has stronger disor-
der. The exponentn3 drastically changes fromn50.060.2
to 1.1760.27; it is natural to think that the membrane with
~3.0,0.75! is not in the usual flat phase nor in the new flat
phase. We assume it is in the crumpled phase.

In order to see further the shape of the membrane with
weak self-avoidance (b53.0), we investigate the structure
factors defined by

S~kW !5
1

N2K (
i , j

expikW•@rW i2rW j #L . ~3.5!

The angular brackets indicate the average over equilibrated
configurations. In Fig. 5, we show the structure factors
S(keW1)5S1(k), S(keW2)5S2(k), andS(keW3)5S3(k), plotted
as a function of the variablekLn for 271<N<547 and
v50.75. Although the scaling for the ‘‘perpendicular’’
structure factorS3 is not good enough to estimate the expo-
nentn3 , we estimaten50.90–0.85 from other structure fac-
tors. Figure 6 depicts the structure factorsS1 andS3 for the
membrane with (b,v)5(3.0,0.52). The scaling behavior for
S1 , which is a function ofkL, indicates that the membrane is
flat. From the scaling of the perpendicular structure factor

S3 , we estimate the roughness exponentn'50.21. This
value is within the error bar of the previous estimate from the
scaling ofl3 and is a reliable one@44#.

From these analysis, we think that the membrane with
~1.7,0.3! is flat and the membrane with~3.0,0.52! is in a new
flat phase with a small roughness exponentn'50.160.1.
The membrane with~3.0,0.75! is in a crumpled phase with
n50.85–0.92, which is near the theoretically predicted
valuen56/7 @34#.

In order to see the behavior of the conformational trans-
formation and the shrinkage of the membrane with weak
self-avoidance caused by the random stress, we have inves-
tigated the behaviors of the membrane with various strength
of disorder. The strength of disorder is in the range
0.0,v,0.95. Figure 7~a! depicts the behavior ofRG and
other eigenvalues of the inertia tensor as a function ofv.
Figure 7~b! shows the corresponding shrinkage parameter,
respectively. Even if the strength of disorder is small,
v;0.2, the shrinkage is large and the density becomes 2.5
times. That is, the membrane’s shape changes significantly.
After that, the shrinkage parameter and other quantities do
not change much. In Fig. 8, we depict the conformational
transformation of the membrane as we change the strength of
disorderv. When the disorder is weakv50.05, the mem-
brane is smooth and we can see its anisotropic nature. As the
disorder becomes large,v50.30–0.50, the membrane’s
conformation changes dramatically and we see large shrink-
ages. The membrane with strong disorderv50.95 seems to
be crumpled and takes an isotropic conformation.

Secondly, we have studied the cooling of the membrane
with strong self-avoidance and weak disorder
(b,v)5(1.7,0.3). If the bending rigidity and the elastic con-
stants change as we decrease the temperatureT, the buckling
condition ~1.1! may be satisfied. At the temperatureT51,
the membrane seems to be flat from the above analysis. The
temperature dependence of the spatial conformations of the
membranes is depicted in Fig. 9. As the temperature de-
creases, atT;0.3, a peak occurs inl3 , however, overall the
membrane becomes flatter and flatter. We see no apparent
evidence of foldings or large buckling, which was seen in the
phantom case nearT50 @40#. We have also obtained other
thermodynamic functions such as internal energy and spe-
cific heat. We do not find any singularity in the data. This
means that the remnant bending rigidity prevents the mem-
brane from drastic buckling within the range ofT studied
here.

IV. CONCLUSIONS

We summarize the results obtained in the previous sec-
tion. First we have studied asymptotic behavior of the mem-
brane with the following sets of parameters
(b,v)5(1.7,0.0),(1.7,0.3) ~‘‘strong’’ self-avoiding case!
and (3.0,0.0),(3.0,0.52),(3.0,0.75) ~‘‘weak’’ self-avoiding
case!.

~1! For membranes with weak self-avoidance (b53.0),
there occurs large shrinkages by the disorder. The relative
density with thev50.0 case becomes 8–9 times even if the
strength of disorder is smallv;0.52~Fig. 6!. As the strength
of disorder increases, the membrane exhibits a phase transi-
tion from a highly fluctuating flat phase (v50.0) to a
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crumpled phase (v50.75,n50.85–0.92) passing through a
new flat phase (v50.52,n'50.160.1) ~Fig. 8!. This result
agrees well with the theoretical predictionn56/7, but a
larger system size and an average over randomness are nec-
essary in order to estimate the exponent precisely. The model
does not completely forbid the self-intersection. These find-
ings may arise from this. That is, if the self-intersection is
completely prohibited, such behaviors may not occur. How-
ever, even if the self-intersection is completely forbidden,
highly crumpled and floppy conformation is possible in a
self-avoiding plaquette membrane model@13,14#. We there-
fore think that large shrinkages can occur in the membrane
with complete self-avoidance when the bending rigidity is
small.

~2! A membrane with strong self-avoidance and weak dis-
order (b,v)5(1.7,0.3) is asymptotically flat and its shrink-
age is small. On the other hand, the membrane with the same
strength of disorder and weak self-avoidance
(b,v)5(3.0,0.52) shows a large shrinkage. One possible
reason for the difference is that the former one has a larger
effective bending rigidity than the latter one. The condition
~1.1! is not satisfied and the buckling transition does not
occur in the strong self-avoidance case. In order to see
whether there occurs some large conformational transforma-
tion by thermal buckling transitions, we have studied the
cooling process of the membrane with~1.7,0.3!. The mem-
brane becomes flatter and flatter as the temperature decreases
and we find no folding or large buckling between the tem-
perature about 0.01,T,10.0. This indicates that the bend-
ing rigidity cannot be so small even if the temperature is very
low. As the ‘‘entropic’’ rigidity contribution to the total
bending rigidity of the flat membrane does not depend much
on the temperature, the buckling condition is not satisfied
even if the temperature becomes small.

From these results, we discuss the possibility of thermal
conformational transformation of the ‘‘weak’’ self-avoiding
tethered membrane with quenched disorder. Introducing the
‘‘bare’’ bending energyk into the model (b53.0), we may
be able to make the membrane smooth and flat again. Then
we may see a large buckling of the membrane by decreasing
the temperature according to the picture explained in the In-
troduction@21#. Such transformation is possible only for the
weak self-avoidance case, otherwise remnant entropic rigid-
ity prevents the condition~1.1! from being satisfied in the
strong self-avoidance case. This possibility may be relevant
to the understanding of the wrinkling transition in partially
polymerized vesicles@23#.

Our results also show that the following mechanism ex-
plains the wrinkling transition@26#. In the experiment, the
partial polymerization at high temperature presumably re-
sults in a sparse but percolating network of covalent bonds
and the flat shape is stable. As the temperature decreases, a
crystalline order sets in within these lipid areas and quenched
random stress will appear. This process corresponds to the
increase inv in our study and large transformation occurs
and a wrinkled structure appears. That is, our results indicate
that the wrinkling transition can be a mechanical buckling
transition, which we found in this work.
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