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Self-avoiding tethered membranes with quenched random internal disorders

Shintaro Mor
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Spatial conformations of a self-avoiding tethered membrane with a quenched in-plane disorder have been
studied using Monte Carlo methods. The simulations have been performed for systems with various strengths
of disorderv and self-avoidancd. (1) The membrane with “strong” self-avoidance and weak disorder
(b,v)=(1.7,0.3) is in the usual flat phase and its shrinkage is small. Even if the temperature decreases the
membrane does not show any clear evidence of a large bucklings the strength of disorder increases the
membrane with “weak” self-avoidancebE& 3.0) shows a phase transition from a usual floppy flat phase
(v=0.0) to a crumpled phase €0.75,»=0.85—-0.92, passing through a new flat phase with a small rough-
ness exponentw(=0.52,v, =0.1+0.1). We discuss the implication of the result, in particular its relevance to
the understanding of the wrinkling transition in partially polymerized vesi¢®&$063-651X%96)10807-2

PACS numbsgs): 87.22.Bt, 36.20.Ey, 64.66., 82.65.Dp

I. INTRODUCTION flat. Theoretically, using the Gaussian variational method,
Guitter and Palmelfi16], Le Doussa[17], and Goulian 18]

The statistical properties of polymerized membranes, odiscussed the existence region of the crumpled phase and
tethered surfaces, have been widely discussed in the past feshowed that the self-avoiding tethered membrane is flat in
years [1-3]. The polymerized membrane is a two- three-dimensional space. Higher-dimensional cases were also
dimensional generalization of a linear polymer. At low- well described in the same framewofk9]. However, as
temperature a membrane with bending rigidity is asymptotithese theories do not describe the buildup of bending forces
cally flat, and its radius of gyratioRg increases as the linear by the self-avoiding interaction and do not answer why the
internal dimensiorL of the surfacg3,4]. As a function of Gaussian approximation works instead of the Flory approxi-
temperature, the membrane without self-avoiding interactionmation, we have a wide gap between the theories and nu-
(phantom membraneshows a crumpling transition from the merical simulationg12].
low-temperature flat phase to a high-temperature crumpled Recently, studies on the effects of quenched in-plane dis-
phase Rs~ +InL) [3]. The properties of the flat phase have orders have been performed. One of the most important ef-
been studied extensiveljd—7]. It is characterized by an fects of the disorder is the buckling transitif20]. Although
anomalous elasticity with shear and compression modulihe stable phase of a defect-free polymerized membrane is
(x and \) that vanish and by a bending rigidityc) that  flat, the strains induced by a defect, such as a dislocation, can
diverges with decreasing wave number. be accommodated by displacements in the normal direction,

One of the surprising characters of the membrane is thd€sulting in the buckling of the membrane. This process,
the self-avoiding tethered membrane is flat when embeddewhich depends on a balance between in-plane stretching en-
in three-dimensional spack8—10. Abraham and Nelson €rgy and curvature energy, occurs when
[11] discussed the origin of the phenomena: Entropic bend- )
ing rigidity induced by the(next-nearest-neighbprself- Kol “/ k> . 1.1
avoidance causes the crumpling transiti@hand the mem- ) , ) o
brane becomes flat. This means that the flat phase of tH@€re.Ko is the Young's modulus the bending rigidity) a
self-avoiding tethered membrane is described by thdength scale, andy a dimensionless constant of order10
Aronowitz-Lubensky(AL) fixed point associated with the [20.21. The length scald depends on the nature of the
flat phase of the phantom membraf6. Their discussion defect. For example, in membranes of sizel =R for dis-
also means that the hard-sphere model has an inevitabffinations andl=Rb for a dislocation with the Burger’s
large bending rigidity originated from the next-nearest-vectorb. Thus these defects always buckle in sufficiently
neighbor interactions and that these simulation did not purelyarge membranes, irrespective of the value of the elastic con-
investigate the effect of self-avoidance. That is, the hardstants. On the other hand, for finite energy defects such as
sphere model is inevitably rigid when the self-intersection isvacancies, interstitials, or tightly bound dislocation pdiis,
completely prohibited. In order to study the “genuine” self- an order of a lattice constant and the stability of the flat
avoidance effect, tethered membrane with hard spheres g@hase depends on the actual values of the elastic constants.
smaller diameter(“weak” self-avoidance [9,10,13, and  This leads to the following interesting possibility of a buck-
“plaquette” membrane moddl13,14] have been employed ling transition in an infinite system as a function of the tem-
[15]. Even in these cases, the membrane becomes flat andpérature[21]. As the temperatur@ decreasesx decreases
was concluded that the self-avoiding tethered membrane iand K, increases. At some temperatufg, the condition

(1.1) is satisfied and the membrane shows a buckling transi-
tion. We can assume that this process is also possible even if
“Electronic address: mori@monet.phys.s.u-tokyo.ac.jp the membrane has the self-avoiding interaction. However,
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FIG. 1. Time dependence of autocorrelatiég, for the radius (b)
of gyration with N=547. The curve X) depicts Agq for
(b,v)=(3.0,0.75) (weak self-avoidance and strong disopdand
the curve () representé\g for (b,v) =(3.0,0.0)(regular hexago-
nal membrang

the self-avoiding interaction does contribute to the bending
rigidity as a “remnant” term[22]. If the interaction is too
strong, the buckling condition is not satisfied and the mem-
brane remains flat even if we quench the system to very low
temperature.

Experimentally, Mutz, Bensimon, and Brienne discovered
the “wrinkling transition” in partially polymerized lipid
vesicles [23,24. The membrane undergoes a reversible
phase transition from a high-temperature phase, where the
membrane is smooth and very fluctuating, to a low-
temperature phase characterized by a rigid and highly
wrinkled surface. Nelson and Radzihovsk25,26 and
Morse, Lubensky, and Gre27,2g analyzed the stability of
the flat phase of thgphantom tethered membrane with ran-
domnesses of the locally preferred metric and spontaneous
curvature by the field theoretical method. It was concluded
that atT>0 the weak short-range disorder is irrelevant and
that the rigid membrane is still described by the pure flat
phase AL fixed point. In order to explain the wrinkling tran-
sition, two possibilities are proposed. One is the strong dis-
order[29,30 and the other is the long-range correlation of
the disordef26,31], which is induced by unscreened discli-
nations[32]. On the other hand, the fact that the flat phase of
the rigid phantom polymerized membrane is stable with re-
spect to the weak disorders at>0 implies that the flat
phase of the self-avoiding tethered membrane is also stable
with respect to the disorders. The situation, however, is not _ _ _ )
so simple. Mori and Wadafi33,34 discussed the existence FIG. 2. (8 _Typlcal conflguratlo_n of a tethered membrane with
region of the crumpled phase of the self-avoiding tetheredveak self-avoidance and strong dlsordbrz;O:(S.g),O.?S) and 547
membrane with disorders and proposed a possibility that thB'Onomers in three-dimensional spagiter 2N Monte Carlo.
membrane is crumpled with=6/7 atd=3. steps. (b) Typl_cal configuration c_)f a tethered membrane with

This analysis does not contradict the above analyses oigonnogmseilsf'e}xo'tiigfdﬁ:gn\;viiizldfg;?;{lg_6&12'7;36?%5”&5&)7
;Eﬁ fg)itaggés'l?ﬁ:te?sauvsvignd?:es &Oérzoggiéh; e\;(ésr;err]i;? dOftﬁ%_epS). (c) Typical configuration of a tethered membrane with no

’ ' isorder p,v)=(3.0,0.0) and 547 monomers.
membrane may become flat and a crumpled phase occurs
only when the effective bending rigidity of the membrane istions all over the membrane. They have used the hard-sphere
small. In fact, Morse,et al. [35] carried out molecular- model with a diameter that completely prohibits the self-
dynamics simulation for self-avoiding polymerized fluid intersections of the membrane. They concluded that the
membrane. The model contains disclinations and dislocamembrane is asymptotically flat and those sites with more
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FIG. 3. The shrinkage parameteg,. as a function of mono-
mer numberN. The curve ) depicts Pgyine for b=3.0,
v=0.75; the curve ¢ ) depictsPgin for b=3.0,v=0.52; and the
curve () represent® i for b=1.7,v=0.3.
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than six neighbors buckle only locally. In order to conclude 100

whether the “genuine” self-avoiding tethered membrane
with disorders can be crumpled or not, it is necessary to
investigate very soft(small bending rigidity membranes.
Another motivation for studying the weak self-avoiding case
is that we can expect a large conformational transformation.
From the conditior(1.1) the buckling transition occurs more
easily when the effective bending rigidity is small. Following
this point of view, we have performed Monte Carlo studies
of a similar model proposed by Morss al. [36]. As a teth-
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ering potential between nearest-neighbor monomers, we use

the following potential

Unn(r)=k(r2—b??2, (1.2
wherek is the force constant and the constandenotes the
equilibrium bond length. We studied the model for several
choices ofb [37,38 and a fixed value of the diameter of the
hard sphere atr=1.0. By changing the bond length we
can simulate the membrane with several values of effective
bending rigidity and various flexibility. The result is summa-
rized as follows. When the reference bond length is small
(b=1.7), the membrane is asymptotically flat and it does not
show large conformational transformation, which is consis-
tent with the result by Morset al. When we takeb=3.0
(weak self-avoidance casethe membrane shows a large
shrinkage(density becomes about seven timasd it is con-
sidered to be in a crumpled phase witk-0.87+0.02[38].
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We note that in the above analysis we have observed a

large shrinkage and a crumpled phase only in the “weak”
self-avoiding case. There remains the possibility that such
findings may be an artifact of the model, because the self-
intersection is not necessarily prohibited. We cannot exclude
such possibility in the hard-sphere model when we analyze
the self-avoiding membrane with small effective bending ri-

FIG. 4. Scaling plot of the mean square radius of gyration
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gidity. However, it is important that the membrane becomegRr2)(x) and expectation valugs\;)( ¢ ), (A\,)(0), (Ag)(+) of

crumpled even in the weak self-avoiding case. Up to nowthe eigenvalues of the moment of inertia tensor for membranes with

almost all theoretical works dealt with the stability of the flat (b,0)=(3.0,0.75 (a), (b,v)=(3.0~0.52 (b), and b,v)=(1.7,0.3

phase of théphantom rigid polymerized membrangr sta-

bility of the AL fixed poinf). Even if self-intersection is not bottom;(b) 0.89,0.96,1.04,0.0Qr) 0.95,0.93,0.93,1.13.

(c). (a) The solid lines have slopes 0.94,0.92,0.88,1.17 from top to
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TABLE I. Scaling exponents dRg and\;. These exponents are determined from the data fat9, 23,

and 27.

(b,v) v 121 vy V3
(1.7,0.0 1.00+ 0.01 0.97+ 0.03 1.14*= 0.06 0.74-0.37
(1.7,0.3 0.95+ 0.01 0.93+ 0.02 0.93+ 0.05 1.13-0.36
(3.0,0.0 1.12+ 0.01 1.13+ 0.02 1.32+ 0.09 0.68-0.48
(3.0,0.52 0.89+ 0.01 0.96+ 0.03 1.04+ 0.05 0.0a:0.2
(3.0,0.75 0.94+ 0.01 0.92+ 0.02 0.88+ 0.05 1.170.27

completely forbidden, when the usual flat phase becomeshow large folding, which is observed in the phantom case.

unstable in numerical studies, the AL fixed point become<On the contrary, the membrane becomes more and more flat.
unstable by disorder. We can say that the disorders are reln Sec. IV, we discuss the implications of the results and

evant to the behavior of the membrane. suggest directions of further studies.

In this work, we shall report Monte Carlo studies of an-
other model for self-avoiding tethered membrane with a ||, MODEL SYSTEM AND SIMULATION PROCEDURE
guenched in-plane disorder. Introducing two kinds of mono-
mers[big (p;=1) and small p;= —1)], which are chosen at The model that we study consists of hard spheres with
random on the network, the reference |ength betweeltithe diametero connected in a two-dimensional triangular array
rule bj;=b+ (p;+p;)v. With the model we can change the ith atom in such a network is denoted by In the simula-
strength of disorder at our convenience. This disorder has ton a hexagonal sheefL=<27 monomers acrosswith
short-range correlation and it is the same with the disorder itN=(3L2+1)/4 monomers excised from the triangular lattice
the polymerized fluid membrari@9]. Phantom case of the has been used. The connectivity of the system is fixed by
model with bending rigidity was at first studied by Kantor keeping nearest-neighbor atoms on the lattice connected by a
[40] and at low temperature the shape of the membrane ddethering potential41]
viated from a flat configuration and it settled into a partially
folded ground state. We shall study the effect of self- Unn(ri)) =k(r;?=b;;?)2. 23
avoidance on this model without bending rigidity apart from . ) .
that induced by the self-avoidance. Especially, when théi€reri; denotes the distance betweitn andjth monomers
bending rigidity of the membrane is small or the diameter of2Nd bj; denotes the equilibrium distancéond length,
the hard sphere is smdllweak” self-avoidance, we like to ~ Which varies among atom pairs but is kept frozen during the
see whether the membrane is crumpled or not and whethémulation. The force constarkt of the springs connecting
the flat phase becomes unstable or not. We also like to sdB€ nearest nelghkgors is the same everywhere and is repre-
whether the membrane shows the buckling transition as tenfi€ntéd as«=e€y/0o” in terms of an arbitrary energy unit
perature decreases when the membrane is flat at high terfie- The bond lengths have been chosen by the following
peraturg20,21). The outline is as follows. At first, we study Procedure[40]: every atomi is independently assigned a
the model at a fixed temperature withh) “strong” self- ~ random numbemp;=*1, representing big or small atoms,
avoidance and weak disordeib,)=(1.7,0.3) and(2) respectively. The bond length between atoand neighbor-
“weak” self-avoidance and several strengths of disorderind atomj is set ad;; =b+(p;+p;)v. Thus the bond length
(b=3.0). We note that, in these models we do not prohibiPetween two big atoms is+2v, the bond length between
completely the self-intersection even in the cébeand that  two small atoms id—2v, while the distance between a big
the name “strong” is not truly strong. Then, in the cadg, and a small atom i®. Such a choice maintains an average
where the membrane becomes asymptotically flat at som@ond lengthb. In order to take into account the effect of
temperature, we study the quenching process and s&glf-avoidance, we add the following potential between all
whether there occurs a large conformational transformationpairs of monomers:

The paper consists of the following. In Sec. Il, we de-
scribe the model and numerical procedures. The results of
the simulations are presented and analyzed in Sec. Ill. The
membrane with weak self-avoidancb=f3.0) shows large
shrinkage even if the strength of disorder is smallHereafter, we fix the diameter of the hard sphere at
(v~0.2). The membrane with weak disordar~0.52) is o =1.0. Note that the tethering potential does not restrict the
asymptotically flat and roughness exponentis extraordi- length between nearest-neighbor monomers. Even if we take
narily small (v, =0.1+0.1). The membrane with strong dis- b<+/3 and v=0, we cannot completely forbid the self-
order ®=0.75) seems to be crumpled and the exponent fointersection at finite temperature. In the simulation we have
the radius of gyratiolRg is 0.85—0.92. The membrane with studied two cases: The first casehs=1.7 [(1):"strong”
strong self-avoidance and weak disorderi)=(1.7,0.3) is  self-avoidancgéand the second case lis=3.0 [(2):“weak”
asymptotically flat and its relative shrinkage as comparedelf-avoidancg[42]. Case(1) corresponds to a rigid mem-
with the membrane without disorder is small. Even if thebrane and cas€) corresponds to a membrane with small
temperature decreases, the shape of the membrane does hending rigidity. About the strength of disorder, in the case

>o
U = . .
(Msa o otherwise. 2.2
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(1), we have fixedv =0.3, which is close to the maximal (@)
contrast between the long and the short bonds as allowed by
the algorithm. In casé2), we have at first studied exten-
sively two case® =0.3x3.0/1.70.52 (weak disorder and
v =0.75(strong disorder The reason we take~ 0.52 is that
such a choice corresponds to the same strength of disordeg:
with case(1), because the ratiow(b) are equal. Then we
have varied the strength of disorder in the range
0.0<v<0.95. For comparison, we have also performed 10
Monte Carlo study of the model with no disorder,
(b,v)=(3.0,0.0) andlf,v)=(1.7,0.0). About the force con- 03
stantk, we have studied the behavior of the membrane at a
temperature  k/kgT=1.0 and used the unit
T=1.0(k/Kg=1.0). At this temperature, the fluctuation of 104
the distances between monomers is small. When we decrease
the temperature in the cagé), the simulation begins at
T=10.0, which was decreased from time to time by a factor ot kLO&?
3. This corresponds to rapid cooling and there remains the
possibility that the membrane is trapped in some local mini-  (®)
mum [43]. However, we think that even with such rapid a8 ] —
cooling we can see whether there occurs buckling instability, 0
since it results in a large conformational transformation of
the membrane.

An elementary move in Monte Carlo simulation consists ;.
of randomly choosing an atom and moving it by a distance
s in a randomly chosen direction. In all the simulations we
have taken the displacemes¥0.2. A trial move is accepted R
or rejected according to the conventional procedure of com-"""
paring exptAE/kgT), where AE is the energy difference
between the configuration before and after the trial move,
with a random number chosen from the intervat D. We tor3
define the Monte Carlo time unit as a time required to per-
form N elementary moves. N i ]

In order to investigate the number of time stédsfined 0.1 05 ! s 10
in terms of Monte Carlo stepsequired for thermalization,
we have estimated the relaxation time by calculating the au-  (c)
tocorrelation function of the observables such as radius of
gyration and eigenvalues of the inertia tensor. The autocor-
relation function of a physical quantit® is defined as
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0.05

where the averagg) is performed over the timg. Figure 1
depicts an example of such measurement for an
L=27(N=547) surface at temperature=1.0. The lines
(crossep and (diamond$ correspond to the autocorrelation \
] s

>

function Ag4(t) of the radius of gyration, respectively, for R NN |

(b,v)=(3.0,0.75) andl§,v)=(3.0,0.0). From the figure we kLog_gs 1 5 10
seeN? Monte Carlo time units is sufficient for equilibration

and independence between samples at the system size
N=547. In all the simulation, we have usad Monte Carlo

FIG. 5. (a) The structure factoB,(q) plotted as a function of

steps as our time unit and we have performed an equilibriu the scaling variablegL®" for N=271 (x), 397 (0), and 547
P P q rreD)_ (b) The structure factoS,(q) plotted as a function of the

process over times ranging betweerN3Gand 500° Monte ¢ ine " yariablesqLO% for N=271 (x). 397 (0), and 547
Carlo time units. We have also performed the disorder aVver) (¢) The “perpendicular” structure factoBs(q) plotted as a
age forN=169 with some samples. When we vary the tem-gnction of the scaling variablegL%% for N=271 (x), 397
perature or the strength of disorder, we have used a triangy«, ), and 547 [0).

lar lattice with 271 monomers.
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. RESULTS As in previous works[8—10|, the inertia tensor of the

. . . tem
Typical spatial conformations of the 547-monomer mem-SyS ©

branes are presented in Fig. 2. The membrane with weak

self-avoidance and strong disorddr, ) = (3.0,0.75) shows N N

a large shrinkage. The membrane is highly crumpled as com- Taﬁ:(llN)Z e = (1/N2)ZJ i er (3.9)
pared with the membrane with no disorder

(b,v)=(3.0,0.0)[Fig. 2c)]. On the other hand, the spatial

conformation of the membrane with “strong” self- is diagonalized for each configuration in the data set and the
avoidance and weak disordes, () =(1.7,0.3) exhibits clear eigenvalues are numbered according to their magnitudes as
anisotropy[Fig. 2(b)]. The membrane seems to be flat and,A\1>A2>X3. The directions of the principal axes are given
apart from some local buckling, the shrinkage is small. by the eigenvectorﬁj corresponding to\;. In Fig. 3, we
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plot the eigenvalues and the square of the radius of gyratioterize the shrinkage of the membrane, especially the differ-
Ré(:)\l+ Ao+ \3) versusN. The exponentss and v; are  ence between the membranes with and without disorder, we

defined as introduce the following shrinkage paramef8i|:
R(ZBN LZV’ A~ L2vi, (3.2 _ V membrane with disorder
Pshrink_v ] ] , (3.3)
When the membrane is flat, the exponemtsy;, and v, membrane without disorder

Sh0u|d COinCide IR(ZB"’)\]_N)\ZNLZV) and r=1.0. We Ca” Wherev is defined as
the exponeni; the roughness exponent (v, <1.0) in this
case. When the membrane is crumpled, all the exponents V=1A1Ao\3. (3.9
coincide andv<1.0.

Before presenting the results of these exponents, we shallhis shrinkage parameter means the inverse of the relative
quantify the shrinkage of the membrane. In order to characdensity of the membrane. In Fig. 3, we show the shrinkage
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(a) v=0.05 (b) v=0.30

FIG. 8. Typical spatial conformation of the two-dimensional membrane with weak self-avoidarc®.qQ) and(a) v=0.05, (b)
v=0.3, (c) v=0.50 in a flat membrane, ar{d) v =0.95 in a crumpled membrane.
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FIG. 9. Temperature dependence of the thfeedered eigenvalues\;>\,>\3 of the inertia tensor of the membrane with
(b,v)=(1.7,0.3) andN=271.
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parameter as a function of the monomer numdor each  S;, we estimate the roughness exponent=0.21. This
case. When the self-avoidance is weak and the bending riralue is within the error bar of the previous estimate from the
gidity of the membrane is smalb& 3.0), we can see a large scaling ofA; and is a reliable onf44].
shrinkage. WithN=547 the relative density becomes about From these analysis, we think that the membrane with
11 times and it does not depend on the strength of disorddi.7,0.3 is flat and the membrane wi{8.0,0.52 is in a new
(v=0.52 and 0.75). On the other hand, the membrane witfilat phase with a small roughness exponent=0.1+0.1.
strong self-avoidance and weak disordér,()=(1.7,0.3) The membrane witt§3.0,0.75 is in a crumpled phase with
shows a small shrinkage. We think that in this case the dis¥=0.85—0.92, which is near the theoretically predicted
order does not change the shape of the membrane drasticallalue v=6/7 [34].
and only local buckling occurs, as we have seen in the spatial In order to see the behavior of the conformational trans-
configuration. This result completely coincides with that of formation and the shrinkage of the membrane with weak
the simulation of polymerized fluid membraf@5,39. self-avoidance caused by the random stress, we have inves-
In what follows, we shall study the asymptotic behaviortigated the behaviors of the membrane with various strength
of the membrane. At first, we study the scaling behavior ofof disorder. The strength of disorder is in the range
the eigenvalues of the inertia tensor. In Fig. 4 and Table 10.0<v<0.95. Figure 7a) depicts the behavior oRg and
we summarize the results. In pure casésv]=(3.0,0.0) other eigenvalues of the inertia tensor as a functiorn of
and (1.7,0.0), the exponenis v;, and v, are apparently Figure {b) shows the corresponding shrinkage parameter,
larger thanv; and the membrane is asymptotically flat. How- respectively. Even if the strength of disorder is small,
ever, the exponents, v,, andv, are larger than 1 and this v~0.2, the shrinkage is large and the density becomes 2.5
means the membrane with (3.0,0.0) tends to stretch and thetienes. That is, the membrane’s shape changes significantly.
remains the effect of the boundary fluctuation or the forceAfter that, the shrinkage parameter and other quantities do
constant k is not strong enough. Also in the case not change much. In Fig. 8, we depict the conformational
(b,v)=(3.0,0.52), the exponents, v,, and v, are larger transformation of the membrane as we change the strength of
than v; and the membrane is anisotroffftat). We see that disorderv. When the disorder is weak=0.05, the mem-
the exponent, is very smally, =0.0+0.2. Such small un- brane is smooth and we can see its anisotropic nature. As the
dulations are caused by the large shrinkage of the membrandisorder becomes large;=0.30-0.50, the membrane’s
As we increase the strength of disorder the usual flat conformation changes dramatically and we see large shrink-
phase becomes unstable by the disorder and the membraneages. The membrane with strong disorder0.95 seems to
in a new flat phase. In the caseb,{)=(3.0,0.75) and be crumpled and takes an isotropic conformation.
(1.7,0.3) all the exponents and ; are large and we see no  Secondly, we have studied the cooling of the membrane
clear evidence of an anisotropy. However, the membranwith  strong  self-avoidance and weak disorder
with (b,v)=(1.7,0.3) shows only a small shrinka¢féig. 3  (b,v)=(1.7,0.3). If the bending rigidity and the elastic con-
and its spatial conformation shows clear anisotrgpig.  stants change as we decrease the tempera&jute buckling
2(b)]. We think that the membrane is flat in this case. On thecondition (1.1) may be satisfied. At the temperatufe=1,
other hand, the membrane with (3.0,0.75) exhibits a largéhe membrane seems to be flat from the above analysis. The
shrinkage and its spatial conformation is also highlytemperature dependence of the spatial conformations of the
crumpled. The membrane wit(8.0,0.52 is in a new flat membranes is depicted in Fig. 9. As the temperature de-
phase and the membrane with0,0.75 has stronger disor- creases, al~0.3, a peak occurs in3, however, overall the
der. The exponent; drastically changes from=0.0-0.2 membrane becomes flatter and flatter. We see no apparent
to 1.17+0.27; it is natural to think that the membrane with evidence of foldings or large buckling, which was seen in the
(3.0,0.75 is not in the usual flat phase nor in the new flatphantom case nedr=0 [40]. We have also obtained other
phase. We assume it is in the crumpled phase. thermodynamic functions such as internal energy and spe-
In order to see further the shape of the membrane witleific heat. We do not find any singularity in the data. This
weak self-avoidanceb=3.0), we investigate the structure means that the remnant bending rigidity prevents the mem-
factors defined by brane from drastic buckling within the range ofstudied
here.

S(k)= W< IE] expk-[r;— ri]> : (3.5 IV. CONCLUSIONS

We summarize the results obtained in the previous sec-
The angular brackets indicate the average over equilibrategon. First we have studied asymptotic behavior of the mem-
configurations. In Fig. 5, we show the structure factorsprane with the following sets of parameters
S(key) =S,(k), S(ke,) =S,(k), andS(kez) = Ss(k), plotted  (b,v)=(1.7,0.0,(1.7,0.3) (“strong” self-avoiding casg
as a function of the variabl&L” for 271<N=<547 and and (3.0,0.p,(3.0,0.52,(3.0,0.75) (“weak” self-avoiding
v=0.75. Although the scaling for the “perpendicular’ case.
structure factoiS; is not good enough to estimate the expo- (1) For membranes with weak self-avoidande=(3.0),
nentv;, we estimater=0.90-0.85 from other structure fac- there occurs large shrinkages by the disorder. The relative
tors. Figure 6 depicts the structure fact@&sandS; for the  density with thev =0.0 case becomes 8-9 times even if the
membrane withlf,v)=(3.0,0.52). The scaling behavior for strength of disorder is small~0.52(Fig. 6). As the strength
S,, which is a function okL, indicates that the membrane is of disorder increases, the membrane exhibits a phase transi-
flat. From the scaling of the perpendicular structure factotion from a highly fluctuating flat phasev €0.0) to a
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crumpled phasey(=0.75,,=0.85—-0.92) passing through a  From these results, we discuss the possibility of thermal
new flat phasey=0.52,», =0.1+0.1) (Fig. 8. This result conformational transformation of the “weak” self-avoiding
agrees well with the theoretical predictian=6/7, but a tethered membrane with quenched disorder. Introducing the
larger system size and an average over randomness are nébare” bending energyx into the model b=3.0), we may
essary in order to estimate the exponent precisely. The modbk able to make the membrane smooth and flat again. Then
does not completely forbid the self-intersection. These findwe may see a large buckling of the membrane by decreasing
ings may arise from this. That is, if the self-intersection isthe temperature according to the picture explained in the In-
completely prohibited, such behaviors may not occur. How+roduction[21]. Such transformation is possible only for the
ever, even if the self-intersection is completely forbidden,weak self-avoidance case, otherwise remnant entropic rigid-
highly crumpled and floppy conformation is possible in aity prevents the conditioril.1]) from being satisfied in the
self-avoiding plaquette membrane mofi&B,14. We there- strong self-avoidance case. This possibility may be relevant
fore think that large shrinkages can occur in the membran# the understanding of the wrinkling transition in partially
with complete self-avoidance when the bending rigidity ispolymerized vesiclef23].
small. Our results also show that the following mechanism ex-
(2) A membrane with strong self-avoidance and weak displains the wrinkling transitiorj26]. In the experiment, the
order (b,v)=(1.7,0.3) is asymptotically flat and its shrink- partial polymerization at high temperature presumably re-
age is small. On the other hand, the membrane with the sansilts in a sparse but percolating network of covalent bonds
strength of disorder and weak self-avoidanceand the flat shape is stable. As the temperature decreases, a
(b,v)=(3.0,0.52) shows a large shrinkage. One possiblerystalline order sets in within these lipid areas and quenched
reason for the difference is that the former one has a largelandom stress will appear. This process corresponds to the
effective bending rigidity than the latter one. The conditionincrease inv in our study and large transformation occurs
(1.1 is not satisfied and the buckling transition does notand a wrinkled structure appears. That is, our results indicate
occur in the strong self-avoidance case. In order to sethat the wrinkling transition can be a mechanical buckling
whether there occurs some large conformational transformdransition, which we found in this work.
tion by thermal buckling transitions, we have studied the
cooling process of the membrane with.7,0.3. The mem-
brane becomes flatter and flatter as the temperature decreases
and we find no folding or large buckling between the tem- The author thanks Professor M. Wadati for useful discus-
perature about 0.64T<10.0. This indicates that the bend- sions, encouragement, and a critical reading of the manu-
ing rigidity cannot be so small even if the temperature is veryscript. He also thanks Dr. S. Komura for useful discussions
low. As the “entropic” rigidity contribution to the total and Professor M. Plischke for instructive discussions about
bending rigidity of the flat membrane does not depend muclthe possibility of thermal phase transition of the membrane
on the temperature, the buckling condition is not satisfiecand remnant bending rigidity. This work is partially sup-
even if the temperature becomes small. ported by the JSPS Fellowships for Junior Scientists.
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